Original Investigation

Oral Bacterial and Fungal Microbiome and Subsequent Risk for Pancreatic Cancer

Yixuan Meng, PhD^{1,2}; Feng Wu, PhD^{1,2}; Soyoung Kwak, PhD^{1,2}; et al

≫ Author Affiliations | Article Information

Published Online: September 18, 2025

doi: 10.1001/jamaoncol.2025.3377

Key Points

Question Is the prediagnostic oral bacterial and fungal microbiome associated with the subsequent development of pancreatic cancer?

Findings In this cohort study including 122 000 individuals, 3 oral bacterial periodontal pathogens, an additional 20 bacteria, and 4 fungi were identified, which together conferred a more than 3-fold increase in the risk for pancreatic cancer.

Meaning The oral fungal and bacterial microbiotas may serve as readily accessible, noninvasive biomarkers for subsequent pancreatic cancer risk to identify individuals at high risk of pancreatic cancer.

Abstract

Importance The oral microbiota may be involved in the development of pancreatic cancer, yet current evidence is largely limited to bacterial 16S amplicon sequencing and small retrospective case-control studies.

Objective To test whether the oral bacterial and fungal microbiome is associated with the subsequent development of pancreatic cancer.

Design, Setting, and Participants This cohort study used data from 2 epidemiological cohorts: the American Cancer Society Cancer Prevention Study-II Nutrition Cohort and the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Among cohort participants who provided oral samples, those who prospectively developed pancreatic cancer were identified during follow-up. Control participants who remained free of cancer were selected by 1:1 frequency matching on cohort, 5-year age band, sex, race and ethnicity, and time since oral sample collection. Data were collected from August 2023 to September 2024, and data were analyzed from August 2023 to January 2025.

Exposures The oral bacterial and fungal microbiome were characterized via whole-genome shotgun sequencing and internal transcribed spacer (ITS) sequencing, respectively. The association of periodontal pathogens of the red complex (*Treponema denticola*, *Porphyromonas gingivalis*, and *Tannerella forsythia*) and orange complex (*Fusobacterium nucleatum*, *F periodonticum*, *Prevotella intermedia*, *P nigrescens*, *Parvimonas micra*, *Eubacterium nodatum*, *Campylobacter shower*, and *C gracilis*) with pancreatic cancer was tested via logistic regression. The association of the microbiome-wide bacterial and fungal taxa with pancreatic cancer was assessed by Analysis of Compositions of Microbiomes With Bias Correction 2 (ANCOM-BC2). Microbial risk scores (MRS) for pancreatic cancer were calculated from the risk-associated bacterial and fungal species.

Main Outcomes and Measures Pancreatic cancer incidence.

Results Of 122 000 cohort participants who provided samples, 445 developed pancreatic cancer over a median (IQR) follow-up of 8.8 (4.9-13.4) years and were matched with 445 controls. Of these 890 participants, 474 (53.3%) were male, and the mean (SD) age was 67.2 (7.5) years. Three oral bacterial periodontal pathogens—*P gingivalis*, *E nodatum*, and *P micra*—were associated with increased risk of pancreatic cancer. A bacteriome-wide scan revealed 8 oral bacteria associated with decreased and 13 oral bacteria associated with increased risk of pancreatic cancer (false discovery rate-adjusted Q statistic less than .05). Of the fungi, genus *Candida* was associated with increased risk of pancreatic cancer. The MRS, based on 27 oral species, was associated with an increase in pancreatic cancer risk (multivariate odds ratio per 1-SD increase in MRS, 3.44; 95% CI, 2.63-4.51).

Conclusions and Relevance In this cohort study, oral bacteria and fungi were significant risk factors for pancreatic cancer development. Oral microbiota hold promise as biomarkers to identify individuals at high risk of pancreatic cancer, potentially contributing to personalized prevention.

Introduction

Pancreatic cancer is highly lethal; the 5-year survival is 13%. Little is known about ways to prevent this cancer. Smoking, obesity, pancreatitis, and genetics are known risk factors, yet these factors explain less than 30% of all pancreatic cancer. To reduce the pancreatic cancer burden, there is a critical need to improve scientific knowledge on the specific causes of this disease and to provide guidance for preventive measures.

We hypothesize that the oral bacteria and fungi are associated with risk of pancreatic cancer. There is strong evidence that microbially related poor oral health,²⁻⁴ and particularly periodontal disease,⁵⁻⁹ are risk factors for pancreatic cancer. Consistent with a bacterial underpinning of these associations with pancreatic cancer, circulating antibody to *Porphyromonas gingivalis*, a periodontal pathogen, has been related to increased risk for orodigestive cancer⁷ and specifically pancreatic cancer.¹⁰ Using direct measurement of bacteria in oral samples by 16S ribosomal RNA amplicon sequencing, we previously showed that oral carriage of *P gingivalis* is related to increased risk for pancreatic cancer.¹¹ Detailed bacterial quantification¹² at the species level, based on whole-genome sequencing,¹³ is needed to confirm these early findings.

The oral fungal microbiome is also a keystone component of the oral microbiome.¹⁴ Clinical candidiasis has been associated with an elevated risk of pancreatic cancer in clinical cohort studies.¹⁵ Fungi, as part of the oral microbiota, interact with bacterial communities, influencing the overall microbial balance and potentially driving carcinogenic processes.¹⁶ While research has predominantly focused on the bacterial microbiome and pancreatic cancer, the relationship between oral fungi and subsequent pancreatic cancer risk remains largely unexplored.

We conducted a prospective study nested in 2 large well-established US cohorts to determine whether the oral bacterial and fungal microbiome is associated with subsequent risk of pancreatic cancer, involving the use of whole-genome shotgun sequencing for oral bacteria and internal transcribed spacer (ITS) sequencing for fungi. We assessed risk of pancreatic cancer associated with oral bacterial and fungal taxa and as summarized in a microbial risk score (MRS).¹⁷

Methods

Study Populations

Parent Cohorts

This study is based on 2 well-established prospective US cohorts. The American Cancer Society Cancer Prevention Study-II Nutrition Cohort (CPS-II)¹⁸ included more than 184 000 participants aged 50 to 74

years in 21 US states. Incident cancers were verified through medical records, state cancer registries, or death certificates. Oral wash samples were collected from 70 000 CPS-II participants from 2001 to 2002. Follow-up for incident cancers was conducted through June 2009. The Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO) cohort¹⁹ is a large population-based randomized clinical trial at 10 US screening centers that was conducted to examine the effect of screening on cancer mortality in approximately 155 000 participants aged 55 to 74 years. Incident cancers were verified through medical records or death certificates. Oral wash samples were collected from 52 000 participants in the PLCO trial control arm, between 2000 and 2003. Cancer follow-up was conducted through December 2010.

The study protocols were approved by the institutional review boards of the American Cancer Society (for CPS-II) and the National Cancer Institute (for PLCO). Written informed consent was obtained from all participants in both cohorts. This study followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline.

Nested Case-Control Study

This study included men and women diagnosed with pancreatic cancer and matched control participants (eTable 1 in <u>Supplement 1</u>). Participants with pancreatic cancer had histologically confirmed incident primary pancreatic adenocarcinoma (*Second Edition of the International Classification of Diseases for Oncology* codes C25.0 to C25.3 and C25.7 to 25.9). Cohort-nested control participants were selected by risk set sampling (1:1 frequency matched), by cohort, 5-year age band, sex, self-reported race and ethnicity (Asian, Black, Hispanic, White, or other race [including American Indian or Alaska Native, Native Hawaiian, Pacific Islander, multiracial, or other race]), year of birth, and time since oral wash sample collection. All participants had valid consent, oral wash samples (ie, before pancreatic cancer diagnosis for cases), and no prior personal history of any cancer.

Measurements

Demographic Information

At enrollment and follow-up periods, cohort participants completed structured questionnaires that included questions about age, sex, race and ethnicity, body mass index (BMI), smoking status, alcohol consumption, and history of diabetes. We used covariates from the questionnaire most closely preceding oral wash sample collection.

Oral Wash Sample Collection

Study participants from the 2 cohorts provided oral samples (Scope; Procter & Gamble), and aliquoting and DNA extraction were conducted at the central repository in each cohort, following similar collec-

tion and processing protocols.^{18,19} The oral microbiome is highly stable over time²⁰⁻²² and shows much greater interindividual variation than intraindividual variation, indicating that oral sample collection at a single time is useful for assessing the oral microbiome in a cohort study.

Oral Bacterial and Fungal Microbiome Characterization

Whole-genome shotgun sequencing for oral bacterial microbiome and additional fungal-specific ITS1 sequencing were completed at NYU Langone Genome Technology Center, New York, New York. Sequencing data were processed using the SHOGUN pipeline, with detailed procedures for human read depletion, taxonomic assignment, and batch effect correction provided in the eMethods in <u>Supplement 1</u>. Both whole-genome shotgun sequencing and ITS assays yielded sufficient reads, capturing major bacterial and fungal phyla, with similar distributions across the 2 cohorts (eFigures 1 and 3 and eTable 2 in <u>Supplement 1</u>). The intraclass correlation coefficient for the blinded randomly repeated controls showed good agreement (0.96 for whole-genome shotgun sequencing and 0.80 for ITS; eFigure 2 in <u>Supplement 1</u>), with distinct clustering observed for the random quality control and positive control samples.

Statistical Analysis

We compared microbial taxa between participants with pancreatic cancer and control participants up to the species level via Analysis of Compositions of Microbiomes With Bias Correction 2, 23 including adjustments for covariates (matched pairs, age, BMI, diabetes, and smoking status). Final covariates were selected based on more than 10% change in effect size. The bacterial species were identified as noteworthy if the false discovery rate (FDR)-adjusted Q statistic was less than .05 and the P value for between-cohort heterogeneity greater than .05. 24 The fungal species were identified as noteworthy if the FDR-adjusted Q statistic was less than .10. 25

We also examined the association with pancreatic cancer for bacterial periodontal pathogens selected a priori because of their established association with periodontal disease^{26 -28} (eTable 3 in <u>Supplement 1</u>). Specifically, we assessed the associations of the oral bacterial red complex (*Treponema denticola*, *P gingivalis*, and *Tannerella forsythia*), the orange complex (*Fusobacterium nucleatum*, *F periodonticum*, *Prevotella intermedia*, *P nigrescens*, *Parvimonas micra*, *Eubacterium nodatum*, *Campylobacter shower*, and *C gracilis*), and their combination (ie, red/orange complex) with the risk of developing pancreatic cancer. Taxonomic abundance was normalized via the bias-corrected log abundances after adding a pseudocount in microbiome data.²³

Lastly, building on the concept of a polygenic risk score used productively in genomic research,²⁹ we constructed an MRS¹⁷ to summarize the microbial profiles in relation to pancreatic cancer risk. Details are described in the eMethods in **Supplement 1**.

Statistical significance was set at P < .05, and all P values were 2-tailed. Analyses were conducted using R version 4.4.1 (The R Foundation), Python version 3.9.13 (Python Software Foundation), Trim Galore version 0.5.0, Samtools version 1.20 (Genome Research Limited), Bowtie2 version 2.5.3, and Miniconda3 version 4.6.14 (Anaconda). Data were collected from August 2023 to September 2024, and data were analyzed from August 2023 to January 2025.

Results

Participant Characteristics

Of 122 000 cohort participants who provided samples, 445 developed pancreatic cancer over a median (IQR) follow-up of 8.8 (4.9-13.4) years and were matched with 445 controls. Of these 890 participants, 416 (46.7%) were female and 474 (53.3%) were male, and the mean (SD) age was 67.2 (7.5) years. A total of 25 participants (2.8%) were Asian, 32 (3.6%) were Black, 12 (1.3%) were Hispanic, 2 (0.2%) were Pacific Islander, 817 (91.8%) were White, and 2 (0.2%) were another race or had missing data. The baseline characteristics of the study participants in both cohorts are presented in eTable 1 in **Supplement 1**. Matching factors, including age, sex, and race and ethnicity, did not differ by case-control status. As expected, family history of pancreatic cancer, smoking, and alcohol use tended to be higher in participants with pancreatic cancer.

Overall Microbiome Diversity and Risk of Pancreatic Cancer

Participants with pancreatic cancer did not differ significantly from matched controls in terms of oral bacterial α diversity, as assessed by species richness and evenness, or in overall microbiome composition (β diversity), as measured by 3 different distances (eFigures 5 and 6 in <u>Supplement 1</u>). Similarly, overall fungal α diversity and β diversity were not associated with pancreatic cancer (eFigure 7 in <u>Supplement 1</u>).

Oral Bacterial Taxa and Risk of Pancreatic Cancer

The periodontal disease pathogens *P gingivalis* in the red complex and *E nodatum* and *P micra* in the orange complex were associated with increased risk for pancreatic cancer (**Figure 1**; eFigure 4 in **Supplement 1**). In the oral microbiome-wide assessment of the 2 cohorts, we identified 21 novel oral bacterial species associated with the risk of pancreatic cancer, after correcting for multiple comparisons (FDR-adjusted Q statistic less than .05) (**Figure 2**A; eTable 4 in **Supplement 1**). The relative abundance of 3 bacterial species within *Proteobacteria*, 2 species in *Bacteroidetes*, and 2 species in *Actinobacteria* were related to a lower risk of developing pancreatic cancer. Conversely, 3 species within *Bacteroidetes*, 6 species within *Actinobacteria*, a *Fusobacterium*, and certain *Firmicutes* were associated with a greater risk of developing pancreatic cancer. The associations of these 21 bacterial species with pancreatic cancer

risk tended to be consistent across the 2 cohorts (<u>Figure 2</u>B). These findings remained robust after excluding the first 3 years of follow-up and across stratified analyses by BMI, diabetes status, smoking status, and alcohol consumption (eFigures 8 to 10 in **Supplement 1**).

Figure 1. Bacterial Periodontal Disease Pathogenic Species and Risk of Pancreatic Cancer

Bacterial Periodontal Disease Pathogenic Species and Risk of Pancreatic Cancer

Odds ratios (ORs) for the association of bacterial periodontal pathogenic species and risk of pancreatic cancer from random-effects meta-analysis of logistic regression estimates overall and for the 2 individual cohorts. Complete results for a priori selected pathogens are presented in eTable 3 in **Supplement 1**. ORs for pancreatic cancer for the periodontal pathogenic species/complexes represent changes per 1-SD increase in each species or complex as a continuous predictor. CPS-II indicates Cancer Prevention Study-II Nutrition Cohort; PLCO, Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial.

Figure 2. Oral Microbiome-Wide Bacteria by Phylum and Risk of Pancreatic Cancer

Oral Microbiome-Wide Bacteria by Phylum and Risk of Pancreatic Cancer

Fold changes for the association between selected taxa and the risk of pancreatic cancer from random-effects meta-analysis of Analysis of Compositions of Microbiomes With Bias Correction 2 abundance estimates overall and for the 2 individual cohorts. Complete results for all bacteria are presented in eTable 4 in **Supplement 1**. Fold change values greater than 1 indicate enrichment in patients with cancer, while values less than 1 indicate enrichment in controls. CPS-II indicates Cancer Prevention Study-II Nutrition Cohort; PLCO, Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial.

Oral Fungal Taxa and Risk of Pancreatic Cancer

Of the oral fungi identified by ITS1 sequencing, *Candida* was the most common genus (abundance, 47.6%; 95% CI, 44.7%-50.4%); greater oral abundance of this genus was significantly associated with

increased risk for pancreatic cancer (Figure 3). Within this genus, the abundance of Candida tropicalis and unspecified Candida (Candida spp; abundance, 30.4%; 95% CI, 27.9%-33.0%) were associated with increased risk, while C albicans was associated with decreased risk. The second most common genus, Malassezia (abundance, 36.2%; 95% CI, 33.5%-38.9%), was not associated overall with pancreatic cancer risk, while M globosa was associated with decreased risk (Q statistic less than .10; eTables 5 and 6 in Supplement 1). These associations for the Candida and Malassezia species remained robust after excluding the first 3 years of follow-up (eFigure 11 in Supplement 1). The association of Candida with pancreatic cancer was particularly evident in study participants who had a history of tobacco use but showed no differentials with respect to BMI, diabetes, and alcohol consumption (eFigures 12 to 13 in Supplement 1). In an additional analysis comparing the oral and pancreatic fungal microbiomes in patients at NYU Langone, we found that members of the Candida genus present in the oral cavity were also present preferentially in pancreatic tumor tissue (eFigure 14 in Supplement 1). Other less common fungi (more than 1% abundance) were not associated with pancreatic cancer.

Figure 3. Oral Microbiome-Wide Fungi and Risk of Pancreatic Cancer

Oral Microbiome-Wide Fungi and Risk of Pancreatic Cancer

Fold changes for the association between fungal taxa and the risk of pancreatic cancer from random-effects meta-analysis of Analysis of Compositions of Microbiomes With Bias Correction 2 abundance estimates overall and for the 2 individual cohorts. Complete results for all fungi are presented in eTable 5 in <u>Supplement 1</u>. Fold change values greater than 1 indicate enrichment in patients with cancer, while values less than 1 indicate enrichment in controls. The figure presents results for all *Candida* and *Malassezia* genera and species, as well as for other fungi with more than 1% abundance. CPS-II indicates Cancer Prevention Study-II Nutrition Cohort; PLCO, Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial.

MRS and Risk of Pancreatic Cancer

Analyzing the microbial profile as a community can characterize more microbial information than analyzing microbes individually. We constructed summary MRSs consisting of risk-associated bacteria and fungi. In a 2-cohort meta-analysis, the MRSs derived for 3 a priori periodontal pathogens, 20 other bacterial species, and 4 fungal pathogens were associated with pancreatic cancer (multivariate odds ratio per 1-SD increase in MRS, 3.44; 95% CI, 2.63-4.51) (<u>Table</u>). There was also a strong degree of reproducibility between the PLCO and CPS-II cohorts and by Monte Carlo cross-validation (<u>Table</u>; eTable 7 in

<u>Supplement 1</u>). Further examination of the association of the MRS with pancreatic cancer did not reveal substantial variability by follow-up period or in relation to BMI, diabetes, cigarette smoking, and alcohol use (eTable 8 in **Supplement 1**).

Table. Microbial Risk Score (MRS) and Risk of Pancreatic Cancer^a

Microbial Risk Score (MRS) and Risk of Pancreatic Cancera

PGo to Figure in Article

As an exploratory analysis, we examined the coabundance patterns among the 27 risk-associated taxa using Dirichlet multinomial mixture-based community clustering. This analysis revealed 3 distinct clusters (Figure 4A) that are differential for pancreatic cancer risk (k = 3; eTable 9 in Supplement 1): Cluster 1 was enriched for high-risk bacteria (Figure 4A) that link to high-risk carbohydrate and lipid metabolism modules (eFigure 15 in <u>Supplement 1</u>). Cluster 2 was characterized by enrichment of *Candida* and other fungal species, which are functionally linked to environmental processing and pathogenicity pathways (eFigure 15 in Supplement 1). Cluster 3 was enriched for Prevotella and Propionibacterium, which tended to be among the top-ranked taxa (Figure 4B; eTable 10 in Supplement 1) and are potentially associated with nucleotide and amino acid metabolism (eFigure 15 in **Supplement 1**).

Figure 4. Overview of Microbial Community Clusters and Importance

Overview of Microbial Community Clusters and Importance

& Go to Figure in Article

A, Heatmap showing the clusters among oral pathogens, fungi, and bacteria in patients with pancreatic cancer and controls. The clustering was calculated to identify distinct groups based on the relative abundance of 3 periodontal pathogens, an additional 20 pancreatic cancer risk-associated bacteria, and 4 fungi. The color of the row strip indicates the group of Dirichlet multinomial mixtures (DMM) modeling clusters (k=3). B, Importance of the microbial taxa in XGBoost³¹ and random forest³² models. Complete results are presented in eTable 10 in Supplement 1.

Discussion

In 2 large, well-established cohorts, we showed that selected bacterial periodontal pathogens in the red and orange complexes were associated with greater risk of pancreatic cancer. In a bacteriome-wide metagenomic scan, we further identified 20 additional oral bacteria associated with this disease. In a mycobiome-wide scan for fungi, we found that greater abundance of 4 fungi, including *Candida*, is also associated with increased risk for pancreatic cancer. Finally, combined as an MRS, the 27 microbial agents were associated with a more than 3-fold increase in the risk for pancreatic cancer per 1-SD increase in the MRS. Our findings on oral microbiota are consistent for 2 cohort populations and are robust to evaluation by Monte Carlo cross-validation. The findings provide evidence that certain oral microbiota are linked to the subsequent development of pancreatic cancer.

Epidemiological studies have shown that clinical candidiasis (clinically defined oral *Candida* fungal infection)¹⁵ is related to increased risk of pancreatic cancer. Patients with cancer are frequently infected by fungal *Candida*; however, this evidence is insufficient to distinguish *Candida* as a cause of cancer or as a sequela of the disease.³³ Early studies demonstrated that *C albicans*, the dominant oral *Candida*, can produce carcinogenic nitrosamines³⁴ and can act as a promoter of carcinogenesis in rats.³⁵ More recently, comprehensive profiling of the oral fungal microbiome has been made possible by sequencing the panfungal ITS1 gene from oral samples.³⁶ In, to our knowledge, the first study of the fungal microbiome using this method in a general population cohort, we prospectively demonstrate that increased oral *Candida* abundance is associated with a higher risk of pancreatic cancer. We further confirmed the presence of *Candida* in both tumor and normal tissue biospecimens from patients with cancer. In animal models, *Candida* has been reported to drive pancreas oncogenesis through modulation of tumor immunity.³⁷ Together, these findings support a potential mechanistic link between oral fungal dysbiosis and pancreatic cancer development, warranting further investigation into the role of *Candida* in oral-to-tumor translocation and pancreatic tumorigenesis.

At the mycobiome species level, we found that *C tropicalis* was related to increased risk and *C albicans* to decreased risk; however, caution is warranted in interpreting the species-level findings, as a substantial proportion of *Candida* in the oral samples in our study (30.4%) could not be resolved to the species level, and abundance of these unresolved reads was also associated with increased risk for pancreatic cancer. *C tropicalis* is reported to facilitate tumor immune evasion³⁸ and inflammasome activation.^{39,40} *C albicans* has been studied for a broad spectrum of functions related to tumor development, including carcinogenic metabolism of alcohol and nitrosamines and induction of cell proliferation through candidalysin and macrophage IL7 pathways.¹⁶ While our results suggest that *Candida* is etiologically involved in pancreatic cancer development, further work is needed to fully characterize the mycobiome at the species level and to better understand the mechanistic basis of our observed associations.

Periodontal disease, a chronic oral inflammatory condition of microbial origin, has been linked to pancreatic cancer in multiple epidemiologic studies.⁵⁻⁹ Of the bacterial periodontal pathogens of the red and orange complexes associated with pancreatic cancer in our study, *P gingivalis* is the most extensively studied. This oral bacterium has been detected in human pancreatic cancer.⁴¹ Recent investigations in mice by Saba et al⁴² show migration of *P gingivalis* from the oral cavity to the pancreas, induction of pancreatic metaplasia by repetitive administration of this bacterium, and exposure-related accelerated progression from pancreatic intraepithelial neoplasia to adenocarcinoma. Several other oral bacteria associated with increased risk for pancreatic cancer in our study exhibit ecological signatures associated with poor oral hygiene⁴³ and periodontal disease, ⁴⁴ including red complex *T forsythia*, ^{45,46} orange complex *E nodatum* and *P micra*, ⁴⁶⁻⁴⁸ and bacteria from the metagenomic screen, including *Slackia exigua*, ⁴⁸ *Olsenella profuse*, ⁴⁹ *Cryptobacterium curtum*, ⁵⁰ *P baroniae*, ⁵¹ and *P catoniae*. ⁵²

Our evidence suggests a clustering tendency of the major newly identified oral bacterial species with the periodontal pathogens. These high-risk oral bacteria are also linked to high-risk modules in carbohydrate and lipid metabolism—which may drive de novo oncogenic mutations in pancreatic cells⁵³— whereas low-risk species tend not to exhibit such modules, thereby supporting the proposition that metabolic profiles of the oral microbiome may relate to pancreas carcinogenesis.⁵⁴ In addition, we identified some previously unrecognized oral bacterial species linked to pancreatic cancer, as exemplified by *Leptotrichia goodfellowii*, which produces lactic acid and is primarily associated with infections in the immunocompromised.⁵⁵

Emerging evidence systematically links oral pathogens to pancreatic carcinogenesis, ⁵⁶ suggesting that poor oral health may be causally related to pancreatic cancer development. Moreover, the swallowing of oral periodontal pathogens can translocate to pancreatic cancer tissue, ⁴² resulting in strong shifts in the pancreatic microbiome ⁴² and dysbiosis that releases microbial toxins ⁵⁷ and metabolites, ⁵⁸ promoting pancreatic tumorigenesis by triggering an innate immune response ⁵⁹ and thereby affecting phagocytic potential and inflammatory processes. ⁴¹ Collectively, the oral microbiome community may exert systemic effects on pancreatic cancer, with oral microbial dysbiosis contributing an etiological link between oral health status and pancreatic cancer development. ⁴⁴ The associated MRS¹⁷ summarizing the bacterial-associated and fungal-associated risks offers a promising tool to identify individuals at high risk of pancreatic cancer. Novel targeted methods for detecting microbial cell-free DNA are effective for detecting intracellular pathogens, ⁶⁰ holding promise as valuable biomarkers in pancreatic cancer. These findings also underscore the potential importance of oral health interventions for prevention of pancreatic cancer.

Limitations and Strengths

Our study has several limitations. As an observational study, there is potential for confounding by un-

measured factors, including absence of dental history, and causality remains to be determined. To our knowledge, this study is the first to prospectively examine the association of the oral mycobiome with pancreatic cancer risk using ITS to characterize the mycobiome. Yet a current limitation is the incompleteness of the microbiome reference databases for fungal identification, which may have limited our findings at the species level for fungi. Recognizing the limitations of our research, the findings warrant further investigation through experimental systems and human intervention studies, broadening to the complete oral microbiome. Furthermore, our study involved a single collection of prediagnostic oral wash samples, which may limit our ability to capture the long-term dynamics of the oral microbiome; however, previous studies have demonstrated that a single measurement can reasonably capture the long-term variability. Lastly, as our populations were predominantly White, the generalizability of our findings to other races and ethnicities may be limited.

The strengths of this study include the use of oral samples collected prior to pancreatic cancer development, nested in 2 large, well-established cohorts. This allows rigorous assessment of the microbe-disease temporal relationship, as the prediagnostic microbiome is not influenced by the cancer. We used comprehensive sequencing-based whole-genome shotgun sequencing and ITS assays, coupled with a novel analytic pipeline developed by our team.⁶² This robust and unbiased approach is designed to characterize microbiota accurately, ^{63,64} supported by excellent quality control results.

Conclusions

In conclusion, this cohort study provides compelling evidence that oral microbiota, including bacteria and fungi, are risk factors for pancreatic cancer development, showing a greater than 3-fold increase in the risk of developing pancreatic cancer per 1-SD increase in the MRS. The oral microbiota holds promise as a biomarker to identify individuals at high risk of pancreatic cancer, potentially enabling personalized pancreatic cancer prevention.

Article Information

Accepted for Publication: July 5, 2025.

Published Online: September 18, 2025. doi:10.1001/jamaoncol.2025.3377

Corresponding Authors: Jiyoung Ahn, PhD (jiyoung.ahn@nyulangone.org), and Richard B. Hayes, DDS, PhD (richard.b.hayes@nyulangone.org), Department of Population Health, NYU Grossman School of Medicine, 522 First Ave, Smilow Research Building, Ste 1001C, New York, NY 10016.

Author Contributions: Drs Hayes and Ahn had full access to all of the data in the study and take re-

sponsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Meng, Hayes, Ahn.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Meng, Hayes, Ahn.

Critical review of the manuscript for important intellectual content: All authors.

Statistical analysis: Meng, Kwak, Wang, Usyk, Li.

Obtained funding: Hayes, Ahn.

Administrative, technical, or material support: Wu, Freedman, Um.

Supervision: Oberstein, Hayes, Ahn.

Conflict of Interest Disclosures: None reported.

Funding/Support: Research reported in this publication was supported in part by the National Institutes of Health under award numbers P2OCA252728, R01CA159036, U01CA250186, P3OCA016087, R01LM014085, and U24ES036002. Samples were sequenced at the NYU School of Medicine Genome Technology Center. The American Cancer Society funds the creation, maintenance, and updating of the American Cancer Society Cancer Prevention Study-II cohort.

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Data Sharing Statement: See <u>Supplement 2</u>.

Additional Contributions: We express sincere appreciation to all American Cancer Society Cancer Prevention Study-II participants and to each member of the study and biospecimen management group. We acknowledge the contribution to this study from central cancer registries supported through the US Centers for Disease Control and Prevention National Program of Cancer Registries and cancer registries supported by the National Cancer Institute Surveillance Epidemiology and End Results Program. Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial is supported by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, and contracts from the Division of Cancer

Prevention, National Cancer Institute, National Institutes of Health, and US Department of Health and Human Services. We thank the National Cancer Institute study management team, the screening center investigators, and staff at Information Management Services and Westat. Most importantly, we thank the study participants for their contributions that made this study possible.

References

1. Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. *CA Cancer J Clin*. 2025;75(1):10-45.

PubMed | Google Scholar

2. Stolzenberg-Solomon RZ, Dodd KW, Blaser MJ, Virtamo J, Taylor PR, Albanes D. Tooth loss, pancreatic cancer, and *Helicobacter pylori*. *Am J Clin Nutr*. 2003;78(1):176-181.

doi:10.1093/ajcn/78.1.176

PubMed | Google Scholar | Crossref

- **3.** Huang J, Roosaar A, Axéll T, Ye W. A prospective cohort study on poor oral hygiene and pancreatic cancer risk. *Int J Cancer*. 2016;138(2):340-347. doi:10.1002/ijc.29710

 PubMed | Google Scholar | Crossref
- **4.** Yu J, Ploner A, Chen MS, Zhang J, Sandborgh-Englund G, Ye W. Poor dental health and risk of pancreatic cancer: a nationwide registry-based cohort study in Sweden, 2009-2016. *Br J Cancer*. 2022;127(12):2133-2140. doi:10.1038/s41416-022-02018-8

 PubMed | Google Scholar | Crossref
- **5.** Michaud DS, Joshipura K, Giovannucci E, Fuchs CS. A prospective study of periodontal disease and pancreatic cancer in US male health professionals. *J Natl Cancer Inst*. 2007;99(2):171-175. doi:10.1093/jnci/djk021

PubMed | Google Scholar | Crossref

6. Michaud DS, Liu Y, Meyer M, Giovannucci E, Joshipura K. Periodontal disease, tooth loss, and cancer risk in male health professionals: a prospective cohort study. *Lancet Oncol*. 2008;9(6):550-558. doi:10.1016/S1470-2045(08)70106-2

PubMed | Google Scholar | Crossref

7. Ahn J, Segers S, Hayes RB. Periodontal disease, *Porphyromonas gingivalis* serum antibody levels and orodigestive cancer mortality. *Carcinogenesis*. 2012;33(5):1055-1058.

doi:10.1093/carcin/bgs112

PubMed | Google Scholar | Crossref

8. Maisonneuve P, Amar S, Lowenfels AB. Periodontal disease, edentulism, and pancreatic cancer:

```
a meta-analysis. Ann Oncol. 2017;28(5):985-995. doi:10.1093/annonc/mdx019 PubMed | Google Scholar | Crossref
```

9. Gerlovin H, Michaud DS, Cozier YC, Palmer JR. Oral health in relation to pancreatic cancer risk in African American women. *Cancer Epidemiol Biomarkers Prev.* 2019;28(4):675-679. doi:10.1158/1055-9965.EPI-18-1053

PubMed | Google Scholar | Crossref

10. Michaud DS, Izard J, Wilhelm-Benartzi CS, et al. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. *Gut*. 2013;62(12):1764-1770. doi:10.1136/gutjnl-2012-303006

PubMed | Google Scholar | Crossref

11. Fan X, Alekseyenko AV, Wu J, et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. *Gut*. 2018;67(1):120-127. doi:10.1136/gutjnl-2016-312580

PubMed | Google Scholar | Crossref

12. Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Knight R, Knights D. SHOGUN: a modular, accurate and scalable framework for microbiome quantification. *Bioinformatics*.

2020;36(13):4088-4090. doi:10.1093/bioinformatics/btaa277

PubMed | Google Scholar | Crossref

13. Hillmann B, Al-Ghalith GA, Shields-Cutler RR, et al. Evaluating the information content of shallow shotgun metagenomics. *mSystems*. 2018;3(6):e00069-18. doi:10.1128/msystems.00069-18

PubMed | Google Scholar | Crossref

- **14.** Janus MM, Willems HM, Krom BP. *Candida albicans* in multispecies oral communities; a keystone commensal? *Adv Exp Med Biol*. 2016;931:13-20. doi:10.1007/5584_2016_5

 PubMed | Google Scholar | Crossref
- **15.** Chung LM, Liang JA, Lin CL, Sun LM, Kao CH. Cancer risk in patients with candidiasis: a nation-wide population-based cohort study. *Oncotarget*. 2017;8(38):63562-63573. doi:10.18632/oncotarget.18855

PubMed | Google Scholar | Crossref

16. Saftien A, Puschhof J, Elinav E. Fungi and cancer. *Gut*. 2023;72(7):1410-1425. doi:10.1136/gutjnl-2022-327952

PubMed | Google Scholar | Crossref

17. Wang C, Segal LN, Hu J, et al. Microbial risk score for capturing microbial characteristics, integrating multi-omics data, and predicting disease risk. *Microbiome*. 2022;10(1):121. doi:10.1186/s40168-022-01310-2

18. Calle EE, Rodriguez C, Jacobs EJ, et al. The American Cancer Society Cancer Prevention Study II Nutrition Cohort: rationale, study design, and baseline characteristics. *Cancer*. 2002;94(2):500-511. doi:10.1002/cncr.10197

PubMed | Google Scholar | Crossref

PubMed | Google Scholar | Crossref

19. Hayes RB, Reding D, Kopp W, et al; Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial Project Team. Etiologic and early marker studies in the prostate, lung, colorectal and ovarian (PLCO) cancer screening trial. *Control Clin Trials*. 2000;21(6)(suppl):349S-355S. doi:10.1016/S0197-2456(00)00101-X

PubMed | Google Scholar | Crossref

20. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. *Science*. 2009;326(5960):1694-1697. doi:10.1126/science.1177486
DubMod J. Coogle Scholar, J. Crossref

PubMed | Google Scholar | Crossref

- **21.** Zhou Y, Gao H, Mihindukulasuriya KA, et al. Biogeography of the ecosystems of the healthy human body. *Genome Biol*. 2013;14(1):R1. doi:10.1186/gb-2013-14-1-r1

 PubMed | Google Scholar | Crossref
- **22.** Belstrøm D, Holmstrup P, Bardow A, Kokaras A, Fiehn NE, Paster BJ. Temporal stability of the salivary microbiota in oral health. *PLoS One*. 2016;11(1):e0147472. doi:10.1371/jour-nal.pone.0147472

 PubMed | Google Scholar | Crossref
- 23. Lin H, Peddada SD. Multigroup analysis of compositions of microbiomes with covariate adjust-ments and repeated measures. *Nat Methods*. 2024;21(1):83-91. doi:10.1038/s41592-023-02092-7
 PubMed | Google Scholar | Crossref
- **24.** Melsen WG, Bootsma MC, Rovers MM, Bonten MJ. The effects of clinical and statistical heterogeneity on the predictive values of results from meta-analyses. *Clin Microbiol Infect*. 2014;20(2):123-129. doi:10.1111/1469-0691.12494

PubMed | Google Scholar | Crossref

25. Efron B, Hastie T. Computer Age Statistical Inference, Student Edition: Algorithms, Evidence, and

- Data Science. Cambridge University Press; 2021. doi:10.1017/9781108914062
- **26.** Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. *J Clin Periodontol*. 1998;25(2):134-144. doi:10.1111/j.1600-051X.1998.tb02419.x PubMed | Google Scholar | Crossref
- 27. Abdulkareem AA, Al-Taweel FB, Al-Sharqi AJB, Gul SS, Sha A, Chapple ILC. Current concepts in the pathogenesis of periodontitis: from symbiosis to dysbiosis. *J Oral Microbiol*. 2023;15(1):2197779. doi:10.1080/20002297.2023.2197779
 PubMed | Google Scholar | Crossref
- 28. Socransky SS, Haffajee AD. Dental biofilms: difficult therapeutic targets. *Periodontol 2000*. 2002;28:12-55. doi:10.1034/j.1600-0757.2002.280102.x

 PubMed | Google Scholar | Crossref
- 29. Choi SW, Mak TS, O'Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc. 2020;15(9):2759-2772. doi:10.1038/s41596-020-0353-1 PubMed | Google Scholar | Crossref
- **30.** Holmes I, Harris K, Quince C. Dirichlet multinomial mixtures: generative models for microbial metagenomics. *PLoS One*. 2012;7(2):e30126. doi:10.1371/journal.pone.0030126

 PubMed | Google Scholar | Crossref
- **31.** Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. Association for Computing Machinery; 2016:785-794. doi:10.1145/2939672.2939785
- **32.** Rigatti SJ. Random forest. *J Insur Med*. 2017;47(1):31-39. doi:10.17849/insm-47-01-31-39.1 PubMed | Google Scholar | Crossref
- **33.** Ramirez-Garcia A, Rementeria A, Aguirre-Urizar JM, et al. *Candida albicans* and cancer: can this yeast induce cancer development or progression? *Crit Rev Microbiol*. 2016;42(2):181-193. PubMed | Google Scholar
- **34.** Krogh P, Hald B, Holmstrup P. Possible mycological etiology of oral mucosal cancer: catalytic potential of infecting *Candida albicans* and other yeasts in production of N-nitrosobenzylmethylamine. *Carcinogenesis*. 1987;8(10):1543-1548. doi:10.1093/carcin/8.10.1543

 PubMed | Google Scholar | Crossref
- **35.** O'Grady JF, Reade PC. *Candida albicans* as a promoter of oral mucosal neoplasia. *Carcinogenesis*. 1992;13(5):783-786. doi:10.1093/carcin/13.5.783

- PubMed | Google Scholar | Crossref
- **36.** Ghannoum MA, Jurevic RJ, Mukherjee PK, et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. *PLoS Pathog*. 2010;6(1):e1000713. doi:10.1371/journal.ppat.1000713
- **37.** Aykut B, Pushalkar S, Chen R, et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. *Nature*. 2019;574(7777):264-267. doi:10.1038/s41586-019-1608-2

PubMed | Google Scholar | Crossref

PubMed | Google Scholar | Crossref

- **38.** Wang T, Fan C, Yao A, et al. The adaptor protein CARD9 protects against colon cancer by restricting mycobiota-mediated expansion of myeloid-derived suppressor cells. *Immunity*. 2018;49(3):504-514.e4. doi:10.1016/j.immuni.2018.08.018

 PubMed | Google Scholar | Crossref
- **39.** Levy M, Thaiss CA, Zeevi D, et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. *Cell*. 2015;163(6):1428-1443. doi:10.1016/j.cell.2015.10.048

 PubMed | Google Scholar | Crossref
- **40.** Malik A, Sharma D, Malireddi RKS, et al. SYK-CARD9 signaling axis promotes gut fungi-mediated inflammasome activation to restrict colitis and colon cancer. *Immunity*. 2018;49(3):515-530.e5. doi:10.1016/j.immuni.2018.08.024

 PubMed | Google Scholar | Crossref
- **41.** Tan Q, Ma X, Yang B, et al. Periodontitis pathogen *Porphyromonas gingivalis* promotes pancreatic tumorigenesis via neutrophil elastase from tumor-associated neutrophils. *Gut Microbes*. 2022;14(1):2073785. doi:10.1080/19490976.2022.2073785

 PubMed | Google Scholar | Crossref
- **42.** Saba E, Farhat M, Daoud A, et al. Oral bacteria accelerate pancreatic cancer development in mice. *Gut*. 2024;73(5):770-786. doi:10.1136/gutjnl-2023-330941

 PubMed | Google Scholar | Crossref
- **43.** Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. *Nat Rev Microbiol*. 2018;16(12):745-759. doi:10.1038/s41579-018-0089-x PubMed | Google Scholar | Crossref
- **44.** Hajishengallis G, Lamont RJ, Koo H. Oral polymicrobial communities: assembly, function, and impact on diseases. *Cell Host Microbe*. 2023;31(4):528-538. doi:10.1016/j.chom.2023.02.009

- PubMed | Google Scholar | Crossref
- **45.** Holt SC, Ebersole JL. *Porphyromonas gingivalis*, *Treponema denticola*, and *Tannerella forsythia*: the "red complex", a prototype polybacterial pathogenic consortium in periodontitis. *Periodontol* 2000. 2005;38:72-122. doi:10.1111/j.1600-0757.2005.00113.x

 PubMed | Google Scholar | Crossref
- **46.** Marchesan JT, Moss K, Morelli T, et al. Distinct microbial signatures between periodontal profile classes. *J Dent Res.* 2021;100(12):1405-1413. doi:10.1177/00220345211009767

 PubMed | Google Scholar | Crossref
- **47.** Invernici MM, Salvador SL, Silva PHF, et al. Effects of Bifidobacterium probiotic on the treatment of chronic periodontitis: a randomized clinical trial. *J Clin Periodontol*. 2018;45(10):1198-1210. doi:10.1111/jcpe.12995

 PubMed | Google Scholar | Crossref
- **48.** Antezack A, Etchecopar-Etchart D, La Scola B, Monnet-Corti V. New putative periodontopathogens and periodontal health-associated species: a systematic review and meta-analysis. *J Periodontal Res.* 2023;58(5):893-906. doi:10.1111/jre.13173

 PubMed | Google Scholar | Crossref
- **49.** Munson MA, Banerjee A, Watson TF, Wade WG. Molecular analysis of the microflora associated with dental caries. *J Clin Microbiol*. 2004;42(7):3023-3029. doi:10.1128/JCM.42.7.3023-3029.2004

 PubMed | Google Scholar | Crossref
- **50.** Kumar PS, Griffen AL, Barton JA, Paster BJ, Moeschberger ML, Leys EJ. New bacterial species associated with chronic periodontitis. *J Dent Res.* 2003;82(5):338-344. doi:10.1177/154405910308200503

 PubMed | Google Scholar | Crossref
- **51.** Sun B, Liu B, Gao X, Xing K, Xie L, Guo T. Metagenomic analysis of saliva reveals disease-associated microbiotas in patients with periodontitis and Crohn's disease-associated periodontitis. *Front Cell Infect Microbiol*. 2021;11:719411. doi:10.3389/fcimb.2021.719411

 PubMed | Google Scholar | Crossref
- **52.** de Lillo A, Booth V, Kyriacou L, Weightman AJ, Wade WG. Culture-independent identification of periodontitis-associated *Porphyromonas* and *Tannerella* populations by targeted molecular analysis. *J Clin Microbiol*. 2004;42(12):5523-5527. doi:10.1128/JCM.42.12.5523-5527.2004 PubMed | Google Scholar | Crossref

- 53. Hu CM, Tien SC, Hsieh PK, et al. High glucose triggers nucleotide imbalance through O-GlcNA-cylation of key enzymes and induces *KRAS* mutation in pancreatic cells. *Cell Metab*. 2019;29(6):1334-1349.e10. doi:10.1016/j.cmet.2019.02.005
 PubMed | Google Scholar | Crossref
- 54. Pandya G, Kirtonia A, Singh A, et al. A comprehensive review of the multifaceted role of the microbiota in human pancreatic carcinoma. Semin Cancer Biol. 2022;86(Pt 3):682-692. doi:10.1016/j.semcancer.2021.05.027
 PubMed | Google Scholar | Crossref
- **55.** Eribe ERK, Olsen I. *Leptotrichia* species in human infections II. *J Oral Microbiol*. 2017;9(1):1368848. doi:10.1080/20002297.2017.1368848

 PubMed | Google Scholar | Crossref
- **56.** Baima G, Minoli M, Michaud DS, et al. Periodontitis and risk of cancer: mechanistic evidence. *Periodontol 2000*. 2024;96(1):83-94.

 PubMed | Google Scholar | Crossref
- 57. Popadiak K, Potempa J, Riesbeck K, Blom AM. Biphasic effect of gingipains from *Porphyromonas gingivalis* on the human complement system. *J Immunol*. 2007;178(11):7242-7250. doi:10.4049/jimmunol.178.11.7242
 PubMed | Google Scholar | Crossref
- **58.** Nouri Z, Choi SW, Choi IJ, et al. Exploring connections between oral microbiota, short-chain fatty acids, and specific cancer types: a study of oral cancer, head and neck cancer, pancreatic cancer, and gastric cancer. *Cancers (Basel)*. 2023;15(11):2898. doi:10.3390/cancers15112898 PubMed | Google Scholar | Crossref
- 59. Gnanasekaran J, Binder Gallimidi A, Saba E, et al. Intracellular *Porphyromonas gingivalis* promotes the tumorigenic behavior of pancreatic carcinoma cells. *Cancers (Basel)*. 2020;12(8):2331. doi:10.3390/cancers12082331
 PubMed | Google Scholar | Crossref
- **60.** Hu Y, Zhao Y, Zhang Y, Chen W, Zhang H, Jin X. Cell-free DNA: a promising biomarker in infectious diseases. *Trends Microbiol*. 2025;33(4):421-433. doi:10.1016/j.tim.2024.06.005 PubMed | Google Scholar | Crossref
- **61.** Everett C, Li C, Wilkinson JE, et al. Overview of the Microbiome Among Nurses study (Micro-N) as an example of prospective characterization of the microbiome within cohort studies. *Nat Protoc.* 2021;16(6):2724-2731. doi:10.1038/s41596-021-00519-z

 PubMed | Google Scholar | Crossref

- **62.** Hu J, Koh H, He L, Liu M, Blaser MJ, Li H. A two-stage microbial association mapping framework with advanced FDR control. *Microbiome*. 2018;6(1):131. doi:10.1186/s40168-018-0517-1 PubMed | Google Scholar | Crossref
- **63.** Ranjan R, Rani A, Metwally A, McGee HS, Perkins DL. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. *Biochem Biophys Res Commun*. 2016;469(4):967-977. doi:10.1016/j.bbrc.2015.12.083

 PubMed | Google Scholar | Crossref
- **64.** Turaev D, Rattei T. High definition for systems biology of microbial communities: metagenomics gets genome-centric and strain-resolved. *Curr Opin Biotechnol*. 2016;39:174-181. doi:10.1016/j.copbio.2016.04.011

 PubMed | Google Scholar | Crossref

Comment		
°— °— Sections	PDF	Share